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ABSTRACT 
We are developing a phoneme based, speaker-dependent 

continuous speech recognition system embedding a Multilayer 
Perceptron (MLP) (i.e., a feedfonvard Artificial Neural Network), 
into a Hidden Markov Model (HMM) approach. Artificial neural 
networks such as the MLP have recently been applied to a number 
of subproblems in speech recognition [1][2][3]. Using the interpo- 
lative capabilities of the MLP, statistical pattem classification can 
be performed over an undersampled pattem space [SI without 
many restrictive simplifying assumptions (such as the indepen- 
dence of input features ). By using contextual information from a 
sliding window on the input frames, we have been able to improve 
frame or phoneme classification performance over the correspond- 
ing performance for simple Maximum Likelihood probabilities, or 
even Maximum a Posteriori (MAP) probabilities which are 
estimated without the benefit of context. We have also leamed 
how to use an MLP to generate HMM emission probabilities for 
continuous speech recognition of a loo0 word vocabulary using a 
vocabulary independent (phonetic) training. Performance for a 
simple discrete density HMM system appears to be somewhat 
better when MLP methods are used to estimate the probabilities. 

INTRODUCTION 
We have performed a number of experiments with a 1OOO- 

word vocabulary continuous speech recognition task. Our frame 
classification results [6] are consistent with other research showing 
the capabilities of MLPs trained with back-propagation-styled 
learning schemes for the recognition of voiced-unvoiced speech 
segments [7], isolated phonemes [2], [3], [4], or of isolated words 
[8]. These results indicate that "neural network" approaches can, 
for some problems, perform pattem classification at least as well 
as traditional HMM approaches. However, this is not particularly 
mysterious. When traditional statistical assumptions (distribution, 
independence of multiple features, etc.) are not valid, systems 
which do not rely on these assumptions can work better (as dis- 
cussed in [SI). Furthermore, networks provide an easy way to 
incorporate multiple sources of evidence (multiple features, con- 
textual windows, etc.) without restrictive assumptions. 

However, it is not so casy to improve the recognition of 
words in continuous speech by the use of an MLP. For instance, 
while it has been shown that the outputs of a feedforward network 
can be used as emission probabilities in an HMM [6], the 
corresponding word recognition performance can be very poor. 
This is true even when the same network demonstrates extremely 
good performance at the frame or phoneme levels. We have 
developed a hybrid MLP-HMM algorithm which (for a prelim- 
inary experiment) appears to exceed performance of the same 
HMM system using standard statistical approaches to estimate the 
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emission probabilities. This was only possible after the original 
algorithm was modified in ways that did not necessarily maximize 
the frame recognition performance for the training set. We will 
describe these modifications below, along with experimental 
results. 

METHODS 
As shown by both theoretical [lo] and experimental [9] 

results, MLP output values may be considered to be estimates of 
MAP probabilities for pattem classification. Either these, or some 
other related quantity (such as the output normalized by the prior 
probability of the corresponding class) may be used in a Viterbi 
search to determine the best time-warped succession of states 
(speech sounds) to explain the observed speech measurements. 
This hybrid approach (MLP to estimate probabilities, HMM to 
incorporate them to recognize continuous speech as a succession 
of words) has the potential of exploiting the interpolating capabili- 
ties of MLPs while using a Dynamic Time Warping (DTW) pro- 
cedure to capture the dynamics of speech. 

However, to achieve good performance at the word level, the 
following modifications of this basic scheme were necessary: 

MLP training methods - a new cross-validation training 
algorithm was designed in which the stopping criterion 
was based on performance for an independent validation 
set [ll]. In other words, training was stopped when per- 
formance on a second set of data began going down, and 
not when training error leveled off. This greatly improved 
generalization, which could be further tested on a third 
independent test set. 
probability estimation from the MLP outputs - In the origi- 
nal scheme [lo], MLP outputs were used as MAP proba- 
bilities for the HMM directly. While th is  helped frame 
performance, it hurt word performance. This may have 
been due at least partly to a mismatch between the relative 
frequency of phonemes in the training sets and test (word 
recognition) sets. Division by the prior class probabilities 
as estimated from the training set removed this effect of 
the priors on the DTW. This led to a small decrease in 
frame classification performance, but a large (sometimes 
10 - 20%) improvement in word recognition rates (see 
Table I1 and accompanying description). 
word transition costs for the underlying HMM - word tran- 
sition penalties had to be increased for l a e r  contextual 
windows to avoid a large number of insertions. This was 
shown to be equivalent to keeping the same word transi- 
tion cost but scaling the log probabilities down by a 
number which reflected the dependence of neighboring 
frames. A reasonable value for this can be determined 
from recognition on a small number of sentences (e.g.. 
SO), choosing a value which results in insertions at most 
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equal to the number of deletions. 
segmentation of training data - much as with HMM sys- 
tems, an iterative procedure was required to time align the 
training labels in a manner that was statistically consistent 
with the recognition methods used. In our most recent 
experiments, we segmented the data using an iterative 
Viterbi alignment starting from a segmentation based on 
average phoneme durations, and terminated at the segmen- 
tation which led to the best performance on an indepen- 
dent test set. For one of our speakers, we had available a 
more accurate frame labeling (produced by an automatic 
but more complex procedure [13]) to use as a start point 
for the iteration, which led to even better performance. 
These techniques improved our concomitant word recog- 
nition to be better than we could achieve either with the 
earlier MLP-HMM technique or the pure HMM technique 
(using, for both cases, HMMs with a single distribution for 
each phoneme, and a single vector-quantized feature). 

(4) 

EXPERIMENTAL APPROACH 
We have been using a speaker-dependent German database 

(available from our collaboration with Philips) called SPICOS 
[121, The speech had been sampled at a rate of 16 kHz, and 30 
points of smoothed, “mel-scaled” logarithmic spectra (over bands 
from 200 to 6400 Hz) were calculated every IO-ms from a 512- 
point FFT over a 25-111s window. For our experiments, the me1 
spectrum and the energy were vector-quantized to pointers into a 
single speaker-dependent table of prototypes. 

Two independent sets of vocabularies for training and test 
are used. The training data-set consists of two sessions of 100 
German sentences per speaker. These sentences are representative 
of the phoneme distribution in the German language and include 
2430 phonemes in each session. The two sessions of 100 sen- 
tences are phonetically segmented on the basis of 50 phonemes, 
using a fully automated procedure [13]. The test set consists of 
one session of 200 sentences per speaker. The recognition voca- 
bulary contains 918 words (including the “silence” word) and the 
overlap between training and recognition is 51 words. Most of the 
latter are articles, prepositions and other structural words. Thus, 
the training and test are essentially vocabulary-independent. Ini- 
tial tests used sentences from a single male speaker. The final 
algorithms were tested on an additional male and female speaker. 

The acoustic vectors were coded on the basis of 132 proto- 
type vectors by a simple binary input layer with only one bit ‘on’. 
Multiple frames were used as input to provide context to the net- 
work. In the experiments reported here, the context was 9 frames. 
When used, a hidden layer was varied from 20 to 200 units, while 
the size of the output layer was kept fixed at 50 units, correspond- 
ing to the 50 phonemes to be recognized. The input field con- 
tained 9x132=1188 units, and the total number of possible inputs 
was thus equal to 13Z9. There were 26767 training patterns (from 
the first training session of 100 sentences) and 26702 independent 
test pattems (from the second training session of 100 sentences). 
Of course, this represented only a very smaJl fraction of the 
possible inputs, and generalization was thus potentially difficult. 
Training was done by the classical “error-back propagation” algo- 
rithm, starting by minimizing an entropy criterion, and then the 
standard least-mean-square error criterion. In each iteration, the 
complete training set was presented, and the parameters were 
updated after each training pattem. To avoid overtraining of the 
MLP, improvement on the test set was checked after each itera- 
tion. If the classification rate on the test set was decreasing, the 
adaptation parameter of the gradient procedure was decreased, 
otherwise it was kept constant, After several reductions of leam- 
ing rate, performance on the test set ceased to improve and train- 
ing was stopped. In another experiment this approach was sys- 

tematized by splitting the data in three parts: one for the training, 
one for the test and a third one absolutely independent of the train- 
ing procedure for validation. No significant difference was 
observed between classification rates for the test and validation 
data. 

The important idea in this procedure was that we stopped 
iterating by any one particular criterion when that criterion was 
leading to no new test set performance. This appeared to 
ameliorate the effects of over-fitting that had been observed in our 
earlier experiments, and greatly improved classification for frames 
of continuous speech. 

The output layer of the MLP was evaluated for each frame, 
and (after division by the prior probability of each phoneme) was 
used as the emission probability in a discrete HMM system. In 
this system, each phoneme was modeled with a single conditional 
density, repeated Di2 times, where D was a prior estimate of the 
duration of the phoneme. Only selfloops and sequential transitions 
were permitted. A Viterbi decoding was then used for recognition 
of the first hundred sentences of the test session (on which word 
entrance penalties were optimized), and our best results were vali- 
dated by a further recognition on the second hundred sentences of 
the test set. Note that this same simplified HMM was used for 
both the ML reference system (estimating probabilities directly 
from relative frequencies) and the MLP system, and that the same 
input features were used for both. 

FRAME CLASSIFICATION RESULTS 
Table I shows the frame classification performance for 5 2 0 ,  

50, and 200 hidden units. The peak at 20 hidden units for test set 
performance, in contrast to the continued improvement in training 
set performance, can be clearly seen. However, this effect is mild 
given the wide range in network size; using 10 times the number 
of weights as in the “peak” case only causes a degradation of 
3.1%. We attribute this to the generalization-based training pro- 
cedure in which training was halted when test set performance 
started to degrade. 

Table I also shows results obtained with Maximum Likeli- 
hood (ML) and Maximum a Posteriori MAP) estimates. In those 
cases, it is not possible to use contextual information, because the 
number of parameters to be leamed would be 50x132’ for the 9 
frames of context. Therefore, the input field was restricted to a 
single frame. The number of parameters for these two last 
classifiers was then 50 x 132 = 6600, a small enough number of 
parameters to be estimated by relative frequencies of occurrence. 
This restriction explains why the MAP (also called Bayes) 
classifier, which is inherently optimal for a given pattem 
classification problem, is shown here as yielding a lower perfor- 
mance than the potentially suboptimal MLP. 

WORD RECOGNITION RESULTS 
Table I1 shows the recognition rate (100% - error rate, where 

errors includes insertions, deletions, and substitutions) for the first 
100 sentences of the test session. AU runs except the last were 
done with the 20 hidden units in the MLP, as suggested by the 
results above. Note the significant positive effect of division of 
the MLP outputs, which are trained to approximate MAP probabil- 
ities, by estimates of the prior probabilities for each class (denoted 
“MLP/priors” in Table 11). Not shown here are the earlier 
improvements required to reach this level of performance, which 
were primarily the modifications to the leaming algorithm 
described above. Additionally, word transition probabilities were 
optimized for both the Maximum Likelihood and MLP style 
HMMs. This led to a word exit probability of lo4 for the ML and 
for 1-frame MLP’s, and for an MLP with 9 frames of con- 
text. After these adjustments, performance was essentially the 
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same for the two approaches. Performance on the last hundred 
sentence of the test session (shown in the last column of Table 11) 
validated that the two systems generalized equivalently despite 
these tunings. 

An initial time alignment of the phonetic transcription with 
the data (for this speaker) had previously been calculated using a 
program incorporating speech-specific knowledge [ 131. This 
labeling had been used for the targets of the frame-based training 
described above. We then used this alignment as a "bootstrap" 
segmentation for an iterative Viterbi procedure, much as is done in 
conventional HMM systems. As with the MLP training, the data 
was divided into a training and cross-validation set, and the seg- 
mentation corresponding to the best validation set frame 
classification rate was used for later training. For both cross- 
validation procedures, we switched to a training set of 150 sen- 
tences (two repetitions of 75 sentences) and a cross-validation set 
of 50 sentences (two repetitions of 25 each). Finally, since the 
best performance in Table I1 was achieved using no hidden layer, 
we continued our experiments using this simpler network, which 
also required only a simple training procedure (entropy e m r  cri- 
terion only). Table 111 shows this performance for the full 200 
recognition sentences (test + validation sets for Table 11). 

Finally, we duplicated the resulting analysis steps for two 
other speakers from the same data base. In this case, we used the 
first 50 recognition sentences to optimize the word entrance penal- 
ties separately for each method and speaker. Boostrap segmenta- 
tions were unavailable for these speakers, so we labeled each 
training set (from the original male plus a male and a female 
speaker) using a Viterbi iteration initialized from a time-alignment 
based on a simple estimate of average phoneme duration. This 
reduced all of the recognition scores, underlining the necessity of a 
good start point for the Viterbi iteration. However, as can be seen 
from the Table IV results (measured over the full 200 recognition 
sentences), the MLP-based methods appear to consistently offer at 
least some measurable improvement over the simpler estimation 
technique. In particular, the performance for the two systems dif- 
fered significantly (p < .001) for two out of three speakers, as well 
as for a multispeaker comparison over the three speakers (in each 
case using a normal approximation to a binomial distribution for 
the null hypothesis). 

DISCUSSION 
These results (all obtained with no language model, i.e., with 

a perplexity of 918 for a 918 word vocabulary) show some of the 
improvement for MLPs over conventional I-MMs which one 
might expect from the frame level results (Table I). MLPs can 
sometimes make better frame level discriminations than simple 
statistical classifiers, because they can easily incorporate multiple 
sources of evidence (multiple frames, multiple features), which is 
difficult to do in HIvlMs without major simplifying assumptions. 
In general, the relation between the MLP and ML word recogni- 
tion is more complex, because of interdependence over time of the 
input features. Part of the difficulty with good recognition may be 
due to our choice of discrete, vector-quantized features, for which 
no metric is defined over the prototype space. Despite these limi- 
tations, it now appears that the probabilities estimated by MLPs 
may offer improved word recognition through the incorporation of 
context in the estimation of emission probabilities. Furthermore, 
our new result shows the effectiveness of Viterbi segmentation in 
labeling training data for an MLP. This result appears to remove a 
major handicap of MLP use, the requirement for hand-labeled 
speech. 

Interestingly, our best results were obtained using an MLP 
with no hidden layer. This suggests that, for the case of a single 
VQ feature, a single Perceptron model is rich enough for the pro- 
babilistic estimation. This network can also be trained more easily 

MLPIpriors 
(0 hidden) 

than networks with one or more hidden layers, particularly when 
an entropy criterion is used. Furthermore, although one of us has 
shown [lo] that the MLP training can be embedded in the Viterbi 
segmentation process, these encouraging results were obtained 
using simple discrete ML estimation only within each iteration. 

The features we have been using were chosen for their effec- 
tiveness in HMM systems, and different combinations may prove 
to be better for MLP inputs. In particular, we would expect that 
feature combinations which have not been vector-quantized should 
have more useful dependencies (both within-frame and over time) 
which the MLP may be able to leam and exploit. We intend to 
explore this possibility in the coming year. 

Finally, is the MLP simply accomplishing a nice interpola- 
tion for the joint density estimates we seek? Perhaps so, and other 
smoothing techniques (kemal estimators, for instance), may work 
as well. Nonetheless, MLP approaches appear to offer a reasonable 
way of incorporating information from multiple sources of 
phonetic evidence into a continuous speech recognizer. 

9 53.3 
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